Precisely modulated pathogenicity island interference with late phage gene transcription.
نویسندگان
چکیده
Having gone to great evolutionary lengths to develop resistance to bacteriophages, bacteria have come up with resistance mechanisms directed at every aspect of the bacteriophage life cycle. Most genes involved in phage resistance are carried by plasmids and other mobile genetic elements, including bacteriophages and their relatives. A very special case of phage resistance is exhibited by the highly mobile phage satellites, staphylococcal pathogenicity islands (SaPIs), which carry and disseminate superantigen and other virulence genes. Unlike the usual phage-resistance mechanisms, the SaPI-encoded interference mechanisms are carefully crafted to ensure that a phage-infected, SaPI-containing cell will lyse, releasing the requisite crop of SaPI particles as well as a greatly diminished crop of phage particles. Previously described SaPI interference genes target phage functions that are not required for SaPI particle production and release. Here we describe a SaPI-mediated interference system that affects expression of late phage gene transcription and consequently is required for SaPI and phage. Although when cloned separately, a single SaPI gene totally blocks phage production, its activity in situ is modulated accurately by a second gene, achieving the required level of interference. The advantage for the host bacteria is that the SaPIs curb excessive phage growth while enhancing their gene transfer activity. This activity is in contrast to that of the clustered regularly interspaced short palindromic repeats (CRISPRs), which totally block phage growth at the cost of phage-mediated gene transfer. In staphylococci the SaPI strategy seems to have prevailed during evolution: The great majority of Staphylococcus aureus strains carry one or more SaPIs, whereas CRISPRs are extremely rare.
منابع مشابه
Staphylococcal pathogenicity island interference with helper phage reproduction is a paradigm of molecular parasitism.
Staphylococcal pathogenicity islands (SaPIs) carry superantigen and resistance genes and are extremely widespread in Staphylococcus aureus and in other Gram-positive bacteria. SaPIs represent a major source of intrageneric horizontal gene transfer and a stealth conduit for intergeneric gene transfer; they are phage satellites that exploit the life cycle of their temperate helper phages with ele...
متن کاملRinA controls phage-mediated packaging and transfer of virulence genes in Gram-positive bacteria
Phage-mediated transfer of microbial genetic elements plays a crucial role in bacterial life style and evolution. In this study, we identify the RinA family of phage-encoded proteins as activators required for transcription of the late operon in a large group of temperate staphylococcal phages. RinA binds to a tightly regulated promoter region, situated upstream of the terS gene, that controls ...
متن کاملIn Vitro Analysis of Predicted DNA-Binding Sites for the Stl Repressor of the Staphylococcus aureus SaPIBov1 Pathogenicity Island
The regulation model of the Staphylococcus aureus pathogenicity island SaPIbov1 transfer was recently reported. The repressor protein Stl obstructs the expression of SaPI proteins Str and Xis, latter which is responsible for mobilization initiation. Upon Φ11 phage infection of S. aureus. phage dUTPase activates the SaPI transfer via Stl-dUTPase complex formation. Our aim was to predict the bind...
متن کاملAn Enterotoxin-Bearing Pathogenicity Island in Staphylococcus epidermidis.
Cocolonization of human mucosal surfaces causes frequent encounters between various staphylococcal species, creating opportunities for the horizontal acquisition of mobile genetic elements. The majority of Staphylococcus aureus toxins and virulence factors are encoded on S. aureus pathogenicity islands (SaPIs). Horizontal movement of SaPIs between S. aureus strains plays a role in the evolution...
متن کاملThe Yersinia high-pathogenicity island.
A pathogenicity island present only in highly pathogenic strains of Yersinia (Y. enterocolitica 1B, Y. pseudotuberculosis I and Y. pestis) has been identified on the chromosome of Yersinia spp. and has been designated High-Pathogenicity Island (HPI). The Yersinia HPI carries a cluster of genes involved in the biosynthesis, transport and regulation of the siderophore yersiniabactin. The major fu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 111 40 شماره
صفحات -
تاریخ انتشار 2014